Action on Hearing Loss Logo
    Total results:
    Search
      Total results:

      Robot-based surgery to improve cochlear implantation

      This month, our newest PhD students begin their projects, investigating areas such as hearing aids, middle ear conditions and cochlear implants. Dr Carly Anderson, our Research Programme Officer, tells us more about some of these projects with a focus on medical devices.

      By: Dr Carly Anderson | 13 October 2017

      Training the scientists of tomorrow 

      Every year we run our PhD studentship scheme to encourage the best students in the UK to become involved in hearing, deafness and tinnitus research. By training the next generation of scientists, we hope to increase the number of researchers working on treatments for hearing loss and tinnitus in the UK. Our PhD scheme enables us to attract high calibre students into hearing research and ensure that they are trained in world-class laboratories. After completing their PhD, we hope that our students will go on to become leaders in their field and continue to make a valuable contribution through research towards improving the lives of people with hearing loss or tinnitus. 

      Here are some of the projects that our new students will be working on:

      Improving cochlear implant surgery through robotics 

      A cochlear implant is an auditory prosthetic, sometimes referred to as a ‘bionic ear’. Cochlear implants allow profoundly deaf people to hear when they can no longer benefit from hearing aids. They work by converting sound vibrations into electrical signals. An electrode array is surgically implanted into the cochlea. The array transmits these electrical signals to the hearing nerve, which passes them on to the brain to be heard as sounds. 

      However, during surgery, when the electrode array is inserted into the cochlea, it can cause damage to the surrounding tissue. This damage to the cochlea often means that any remaining natural hearing that the person has is either partially or completely lost. Keeping this residual hearing can help people to hear better when they have a cochlear implant, and so minimising trauma during surgery is crucial. In addition, how precisely and fully the electrode array is placed within the cochlea influences how well someone is able to hear with their cochlear implant. Increased precision and more complete insertion within the cochlea could therefore provide better hearing outcomes for someone with a cochlear implant. 

      In this project, the student, Nauman Hafeez, working in Dr Xinli Du’s lab at Brunel University, will develop novel micro-technology to help improve surgical precision during cochlear implantation. He will look at whether hand-held robotic technology could enable a cochlear implant electrode array to be inserted automatically into the cochlea, with increased precision and minimal trauma compared to a human surgeon. Nauman will investigate how changes in the electrical properties of the implant, caused by interactions with the cochlea during implantation, can be used to ‘sense’ and control insertion of the electrode array in a way that avoids damage. He will also investigate technology that ‘pulls’ rather than ‘pushes’ the implant into the cochlea. His goal is to combine these technologies to automate the placement of cochlear implant arrays within the cochlea, in the hope that this will lead to technology that increases precision and reduces the amount of damage caused to the cochlea when a cochlear implant is fitted. This could help to increase cochlear implant performance, preserve the person’s residual hearing, improve their hearing ability, and lead to more predictable outcomes for patients. This could ultimately lead to current NHS eligibility criteria being relaxed, improving access to this life-changing technology. 

      Better testing of hearing aids 

      The NHS currently spends around £60 million a year on providing hearing aids for people with hearing loss. Unfortunately, there is no easy way to test or predict which hearing aids will work best for the people using them, so there is no way to ensure that they are providing the best hearing aids possible. 

      The methods that are currently used to test hearing aids are fairly basic, and they don’t provide a lot of information about the quality of sound or clarity of speech that someone will hear through them. They also don’t predict how well a hearing aid will work when someone is listening to conversations against a noisy background. In this project, the student, Robyn Hunt, working in Dr Steven Bell’s lab at the University of Southampton, will use algorithms developed by the telecoms industry, used to predict speech quality and speech intelligibility in mobile phones. She will test and develop these algorithms further, and combine them with other measures used in hearing research to find the best way to predict sound quality and speech intelligibility for people with hearing loss using hearing aids. 

      Robyn’s project will build on previous work at Southampton that looked to predict the quality of music from hearing aids. She will work with people with mild to moderate hearing loss to assess the quality of speech they hear when using different hearing aids, and how well the hearing aids help them to understand speech against a noisy background. She will also record outputs from the hearing aids themselves, and analyse various factors from these recordings, such as distortion, that can reduce sound quality. Robyn will then train a ‘neural network’ (a computer system that can learn patterns in data) to work out which combinations of these measurements best predict sound quality or speech intelligibility for people with hearing loss. 

      Developing quick and simple methods to measure these parameters could help the NHS to choose the best hearing devices for their patients in a cost-effective manner. These measures could also help to speed up the development of new hearing aid technology, by allowing manufacturers to optimise the design and features of hearing aids more quickly and to a higher standard than currently. 

      Our PhD studentship scheme is not only increasing the number of researchers dedicated to hearing research, but is also generating valuable research findings that move us closer to better treatments and cures for hearing loss and tinnitus.

      Find out more:

      We depend on your donations so we can fund the best hearing and tinnitus research around the world. Donate today and help us continue our vital work into hearing treatments, so that people can live life to the full again.

      Recent Posts

      Gene therapy breakthrough for hearing loss

      A team of international researchers have used a new gene therapy technique to restore hearing in mice with a genetic form of deafness that is similar to a type found in people (called DFNB9). Our Translational Research Manager, Dr Carina Santos, tells us more about their work.

      By: Dr Carina Santos
      18 March 2019

      Smartphone accessibility and security

      Smartphones are capable of doing extraordinary things. They have gone from basic text, email and call function to being able to complete complex tasks like a mini computer. With all of this capability, how can they be used to improve accessibility and what are the manufacturers doing to make them more inclusive? Also, are they doing enough to ensure people are safe when using these devices?

      By: Jesal Vishnuram
      18 March 2019

      Products for when you're on the go

      To celebrate English Tourism Week, we’ve selected our top travel products for deafness, tinnitus and hearing loss. Whether you’re exploring a tourist attraction, attending an event or heading on holiday, we’ve everything you need to get the most from your visit.

      By: Sally Bromham
      18 March 2019

      Research to help improve the quality of hearing aids

      Robyn Hunt’s PhD project at the University of Southampton is testing whether computer algorithms can accurately predict how well hearing aids process speech in noisy environments, to help improve the quality of NHS hearing aids. She tells us more.

      By: Robyn Hunt
      06 March 2019

      Recent Posts

      Gene therapy breakthrough for hearing loss

      A team of international researchers have used a new gene therapy technique to restore hearing in mice with a genetic form of deafness that is similar to a type found in people (called DFNB9). Our Translational Research Manager, Dr Carina Santos, tells us more about their work.

      By: Dr Carina Santos
      18 March 2019

      Smartphone accessibility and security

      Smartphones are capable of doing extraordinary things. They have gone from basic text, email and call function to being able to complete complex tasks like a mini computer. With all of this capability, how can they be used to improve accessibility and what are the manufacturers doing to make them more inclusive? Also, are they doing enough to ensure people are safe when using these devices?

      By: Jesal Vishnuram
      18 March 2019

      Products for when you're on the go

      To celebrate English Tourism Week, we’ve selected our top travel products for deafness, tinnitus and hearing loss. Whether you’re exploring a tourist attraction, attending an event or heading on holiday, we’ve everything you need to get the most from your visit.

      By: Sally Bromham
      18 March 2019

      Research to help improve the quality of hearing aids

      Robyn Hunt’s PhD project at the University of Southampton is testing whether computer algorithms can accurately predict how well hearing aids process speech in noisy environments, to help improve the quality of NHS hearing aids. She tells us more.

      By: Robyn Hunt
      06 March 2019