Action on Hearing Loss Logo
    Total results:
    Search
      Total results:

      Protecting hearing from ear-toxic medicines

      With the help of our funding, researchers at the UCL Ear Institute have shown that structures called stress granules, which form when a cell is damaged or otherwise stressed, can protect hair cells from the damage caused by ototoxic (ear-toxic) medicines, such as aminoglycoside antibiotics. Dr Ralph Holme, from our Research team, tells us more.

      By: Dr Ralph Holme | 16 September 2019
      Hearing can be damaged by the side effects of some life-saving medicines used to treat serious bacterial infections and some types of cancer. One of these is a class of antibiotic called aminoglycosides. Despite their known ear-toxic properties they are still used to treat infections, particularly in premature babies and people with cystic fibrosis. They are also cheap, so widely used in poorer countries. We are funding research into finding ways of blocking the ear-toxic side effects, so that these important medicines can be used safely without leaving people with a permanent hearing loss.

      Last month important findings from research we have been funding at UCL’s Ear Institute were announced, that we hope will pave the way for new medicines able to block the side-effects of aminoglycoside antibiotics.


      Stress granules play an important role

      Aminoglycoside antibiotics cause hearing loss by getting inside the tiny hair cells in the cochlea, causing them to degenerate and die. These hair cells are vital for detecting sound and our ears aren’t able to replace them once they have been lost, which is why hearing loss is permanent. Dr Cláudia Gonçalves, whose PhD we funded, discovered that shortly after being exposed to aminoglycosides, small granules appear inside the hair cells. These granules have been observed in other types of cell when put under strain and have been termed stress granules. They are formed by proteins and mRNA molecules clumping together. mRNA are the molecules that carry instructions for making proteins from the DNA to the structures where the proteins are made. It is thought that when a cell is under stress the formation of these granules may help the cell to sort mRNA molecules, so that the production of proteins able to protect the cell from the damage is prioritised and the production of those that might play a role in the cell’s demise are limited.

      Could the formation of stress granules in hair cells exposed to aminoglycoside antibiotics actually be a natural cell survival response? To test this, Dr Gonçalves treated cells taken from the cochlea and grown in the laboratory with a drug that is known to boost the formation of stress granules, and then exposed them to aminoglycoside antibiotics. The result was a four-fold increase in the number of surviving hair cells compared to the preparations that weren’t treated with the stress granule-boosting drug.

      In a separate experiment, she treated the cells with a different drug - one that prevents the formation of stress granules. This time she saw no increase in the number of surviving hair cells after being exposed to aminoglycosides.

      Hair cells before and after aminoglycoside antibiotic treatment. On the left are healthy hair cells – three rows of outer hair cells (left) and one row of inner hair cells (right). The right image shows hair cells which have been treated with an aminoglycoside, kanamycin – many of the outer hair cells show signs of damage. Stress granules may be the cell’s way of trying to cope with this damage. With thanks to Professor David Furness (Keele University) for providing this image.

      Hair cells before and after aminoglycoside antibiotic treatment. On the left are healthy hair cells – three rows of outer hair cells (left) and one row of inner hair cells (right). The right image shows hair cells which have been treated with an aminoglycoside, kanamycin – many of the outer hair cells show signs of damage. Stress granules may be the cell’s way of trying to cope with this damage. With thanks to Professor David Furness (Keele University) for providing this image.

      Boosting stress granules might be a way to protect hearing

      The research findings suggest that drugs able to boost the production of stress granules might prime hair cells in the cochlea so that they are more resistant to the toxic side effects of aminoglycosides. They could be given to people just before they receive their antibiotic treatment to protect their hearing. The work so far has only been carried out in tissue taken from the cochlea and grown in the laboratory. It will be fascinating to learn whether the approach to protect hearing will work in an intact ear. What’s more, the approach might even help prevent other types of hearing loss that result from cellular stress such as other ear-toxic medicines used to treat cancer, exposure to loud noise and, perhaps, even age-related hearing loss.

      Find out more


      The research was funded by Action on Hearing Loss and the MRC. Dr Cláudia Gonçalves was funded by Action on Hearing Loss to do her PhD work in the laboratories of Dr Sally Dawson and Professor Jonathan Gale. You can read the original paper on the journal website: https://www.nature.com/articles/s41598-019-48393-w

      We depend on your donations so we can fund the best hearing and tinnitus research around the world. Donate today and help us continue our vital work into hearing treatments, so that people can live life to the full again.

      You can find out more about the research we’re funding in our biomedical research section.

      If you’re interested in finding out more about our research, sign up to receive our Soundbite newsletter. It’s a monthly email, filled with the latest news about hearing and tinnitus research.

      Recent Posts

      Could ‘chemical earmuffs’ prevent noise-induced hearing damage?

      Researchers in the US have identified molecules in the inner ear that are involved in the damage that loud noise causes to hearing. Blocking their activity protected against this damage when mice were exposed to loud noise. These findings could form the basis of new treatments to protect people’s hearing from noise.

      By: Tracey Pollard
      16 March 2020

      Helping patients to be heard: What the new NICE guidance means for people with tinnitus

      Imagine you’re trying to enjoy a moment of silence, but it’s interrupted by a relentless ringing noise. What if this happened all day, every day? That’s persistent tinnitus, and as an audiologist, I see the impact of this condition every day.

      By: Vai Maheswaran
      11 March 2020

      A clinical trial of a new investigational drug for vertigo in Ménière’s disease - OTO-104

      A clinical study team are looking for volunteers to test their new investigational drug, OTO-104, for vertigo episodes in Ménière’s disease.

      By: The OTO-104 Study Team
      11 March 2020

      Our future research leaders

      Last month, we invited our PhD students and our early-career Fellows to visit our head office in Highbury, to find out more about the work we do, to meet each other and to meet our staff. Marta Narkiewicz, from our research team, tells us more about the day.

      By: Marta Narkiewicz
      10 March 2020

      Recent Posts

      Could ‘chemical earmuffs’ prevent noise-induced hearing damage?

      Researchers in the US have identified molecules in the inner ear that are involved in the damage that loud noise causes to hearing. Blocking their activity protected against this damage when mice were exposed to loud noise. These findings could form the basis of new treatments to protect people’s hearing from noise.

      By: Tracey Pollard
      16 March 2020

      Helping patients to be heard: What the new NICE guidance means for people with tinnitus

      Imagine you’re trying to enjoy a moment of silence, but it’s interrupted by a relentless ringing noise. What if this happened all day, every day? That’s persistent tinnitus, and as an audiologist, I see the impact of this condition every day.

      By: Vai Maheswaran
      11 March 2020

      A clinical trial of a new investigational drug for vertigo in Ménière’s disease - OTO-104

      A clinical study team are looking for volunteers to test their new investigational drug, OTO-104, for vertigo episodes in Ménière’s disease.

      By: The OTO-104 Study Team
      11 March 2020

      Our future research leaders

      Last month, we invited our PhD students and our early-career Fellows to visit our head office in Highbury, to find out more about the work we do, to meet each other and to meet our staff. Marta Narkiewicz, from our research team, tells us more about the day.

      By: Marta Narkiewicz
      10 March 2020

      More like this

      We're really proud of everyone who's a part of Action on Hearing Loss, and hope you'll feel inspired to become a part of our community.​

      We campaign for changes that make life better for people who are confronting deafness, tinnitus and hearing loss.

      Our ears are our organs of hearing and balance. They have three parts: the outer, middle and inner ear.